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Abstract 

The intimate relationship between coherent states and geodesics is pointed out. For homogenous 
manifolds in which the exponential from the Lie algebra to the Lie group equals the geodesic 
exponential, and in particular for symmetric spaces, it is proved that the cut locus of the point 0 is 
equal to the set of coherent vectors orthogonal to IO). A simple method to calculate the conjugate 
locus in Hetmitian symmetric spaces with significance in the coherent state approach is presented. 

The results are illustrated on the complex Grassmannian manifold. 
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1. Introduction 

The coherent states [l] are an excellent interplay of classical and quantum mechanics [2]. 

The local construction of Perelomov’s homogeneous coherent states [3] was globalized, 

including the Kahlerian nonhomogeneous manifolds [4]. Simultaneously, the geometric 

quantization program [5] furnishes, at least in principle, a tool towards the quantization 

program of Dirac on differentiable manifolds. Actually, using both the same mathematical 

objects from complex geometry [6], fibre bundles [7], algebraic geometry [8], . . , the 

coherent state approach and the geometric quantization are deeply related. In fact, the 

coherent state approach offers a straightforward recipe for geometric quantization [9]. 
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However, interesting problems in both these already classical fields have not been yet 
tackled. One of them is the relationship between coherent states and geodesics. 

The starting point of this paper is Ref. [10, Remark 3] which expresses in the language 
of coherent states the property, here called condition (A), that for symmetric spaces the 

geodesics emanating from the point o of the symmetric spaces are given by the exponential 
exp from the Lie algebra to the Lie group and all the geodesics are obtained in such a way. 
The aim of this report is to explore further this relationship. 

Firstly, let us recall some notions related to geodesics. Let us fix a point p of a complete 

Riemannian manifold V and a geodesic y emanating from p. Then the cut point [ 11 ] of p 

along y is the first point on y such that, for any point r beyond q on y, there is a shorter 
geodesic from p to r different from y. A point q is a conjugate point of p along y if there 

is a one-parameter family of geodesics from p to q neighbouring y. Equivalent and precise 
definitions are given in Section 3. Here we only stress that the importance of the cut loci 
lies in the fact they inherit topological properties of the manifold V. V may be obtained 

from CLp by attaching an n-dimensional cell via the map Exp : CLp --~ CLp and CLp is 
a strong deformation retract of V \ {p}, where CL (resp. CL) denotes the tangent cut locus 
(resp. the cut locus). 

In this paper it is found that for some homogeneous manifolds there is an intimate 

connection between the cut locus CLo of a point on the manifold ,~  corresponding to a 
fixed eolaerent vector, say 10), and the polar divisor •o, i.e. the locus of coherent vectors 
orthogonal to 10). The equality 

CLo = ~70 (1.1) 

is proved under a technical condition for the manifold, called condition (B). It is stressed 
that condition (B) implies condition (A) and the well-known case of Riemannian symmetric 

spaces [ 13-15] is contained as a particular case. Despite the fact that equality (1.1) is proved 
only for manifolds which satisfy condition (B), this remark is attractive even from pure 

mathematical point of view, due to the lack of methods to characterize the cut locus as an 
object of global differential geometry [ 16]. In this paper we illustrate the results in the case 
of the complex Grassmannian manifold Gn(Cm+n). The cut locus o n  Gn(C m+n) is well 
known [13,15]. 

Another contribution of this article is contained in Theorem 1 which proposes a calcula- 
tion with significance in the coherent state approach of the conjugate locus for Hermitian 
symmetric spaces. The connection with the coherent state approach consists in the fact that 
the parameters Z and B which appear in the geodesic exponential map Z = Z(B)  are 
two different parameters of the coherent states for symmetric spaces. We also illustrate the 
method in the case of the complex Grassmannian manifold Gn (cm+n). However, the situa- 

tion in this case is more complicated than in the case of the cut locus. In fact, there are two 
main contributions in this field. Wong [14] has announced the expression of the conjugate 
locus in the Grassmannian manifold, while the calculation of the tangent conjugate locus of 
Sakai [ 15] shows that Wong's result is incomplete. All these problems are largely discussed 
elsewhere [ 17], where another proof of the result of Sakai on the tangent conjugate locus 
is given and a calculation of the conjugate locus in Gn(C m+n) using Theorem 1 is also 
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given. The only new observation [17] is a geometrical characterization of the part of the 

conjugate locus not found by Wong [ 14,15] as consisting of those points of  the Gn (C re+n) 

which have at least two of the stationary angles [ 18] with a fixed n-plane equal. We have 

included in Section 4 only the notions necessary to illustrate the results of  this paper in the 
example of  Gn (cm+n). 

Some of the results included in the present work have been already briefly announced as 
part of  a trial to find a geometrical characterization of Perelomov's  construction of coherent 
state manifold as K~ihlerian embedding into a projective space [19,20]. 

The paper is organized as follows. In Section 2 the notation on coherent state manifolds 
is fixed. The result CLo = 27o and some results on coherent states and conjugate points are 

proved in Section 3 for mani fo lds /~  which satisfy condition (B). Section 4 deals with the 

Grassmannian manifold. 

2. The coherent state manifold and the coherent vector manifold 

First we fix the notation referring to the coherent state manifold. 

2.1 

Let us consider a quantum system with symmetry, i.e. a triplet (K, G, Jr), where zr is a 
unitary irreducible representation of the Lie group G on the Hilbert space K. Let us consider 

the orbit 

= {K(g)l~0) I g ~ G}, (2.1) 

where si" is the projective representation of G induced by rr, I~P0) • K is fixed and ~ " 
K ~ PK is the projection ~(laP)) = IT) = { ei~° I ~)  I~p • ~}. Then we have the bijection 

: G / K  ~ ~1, ~(gK) = ~'(g)l~0),  where K is the stationary group of the state 150). 
The quantum mechanics can be realized as the elementary G-space [21] (PK, wFs, p') ,  
where wFs is the Fubini-Study (K~ihler) fundamental two-form on the projective space PK, 

and p '  is the isomorphism of the Lie algebra .q of G into the algebra of  smooth functions 

on PK. The keystone in the coherent state approach is to find a Hilbert space L and a 
K~ihlerian embedding t : M ~ PL [19,22]. T h e n / ~  is called coherent state manifold and 

(M, w, p) is a Hamiltonian G-space, with oJ = ogFSI~ = t*wFS, p = Pi~t" Dequantization 

means passing on from the dynamical system problem in the initial Hilbert space K to the 

corresponding one on M. 

If I@0) -- I J) ,  i.e. an (anti-)dominant weight vector for compact connected simply con- 
nected Lie groups, then t is indeed a KS.hlerian embedding [21 ] and ,~  coincides with the 
coadjoint orbit in .q* through the root j corresponding to the (anti-)dominant weight vector 
[23]. So, furnishingboth the representation Jr = 7['j and the Hilbert space Kj of holomorphic 
sections with base M,  it is found that L = Kj*, and the Borel-Weil-Bott  theorem solves the 
requantization problem [9,24]. Here E* denotes the dual of the vectorial space E, i.e. the 
space of linear functionals on E. 
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We now briefly discuss the embedding t for compact complex manifolds M. In this case, 

the condition f o r  the existence o f  the embedding t is equivalent to the requirement f o r  the 

manifold to be Hodge [8], which is the same condition as prequantization in geometric 

quantization [25]. For example, in order to have the condition 09 6 H2(M, 77) fulfilled for 

Hermitian symmetric spaces it is sufficient that a theorem due to Harish-Chandra [ 10,5,26] 

to be satisfied. This theorem in the compact case is just the Borel-Weil-Bott theorem. The 
Kodaira vanishing theorem replaces the Borel-Weil-Bott theorem, as was already remarked 

[27] in the context of cohernt states. Let now ~0 " M '  --+ ~1 be a holomorphic line bundle. 
Another way to express the condition to have the embedding is that the line bundle M'  be a 

positive one, or, equivalently, to be ample (see [28, Theorem. 5.1, p.89]). The last condition 

means that there exists an integer m0 such that for m > mo, M = M 'm = t* [ 1 ]. We use the 
notation [r] = H r, r 6 22, where H is the hyperplane bundle overPL and E m is the m times 

tensor product of the bundle E with itself. Here ~0 is the positive line bundle appearing in 
the Kodaira embedding theorem, and the embedding t • ~1 ~ PL  = CIP N- l [29] is 

t ~ tM ;X  ----* LM(X ) = [SI(X ) . . . . .  SN(X)]. (2.2) 

The line bundle M is furnished by the coherent state approach and is called coherent vector 

manifold [30]. As a consequence of the Kodaira embedding theorem, the Kodaira vanishing 
[28] theorem implies that in the sum giving the generalized Euler-Poincar6 characteristic 

[8], only the zero term is present, and the dimension of the representation zrj is furnished 
by the Riemann-Roch-Hirzebruch theorem (cf. [8, Theorem 18.2.2, p.140]). There are 
situations in which the coherent state approach permits rapid and explicit statements, for 

example, ~ r  flag manifolds, the minimal exponent N appearing in the Kodaira embedding 
theorem, M ~ CP u - I  , is equal to the Euler-Poincar6 characteristic, N = X (M) [ 19,30]. 

The noncompact case is treated similarly by Kobayashi [31 ], the Hilbert space L being 
infinite-dimensional. In the construction of Kobayashi, L is the dual of the Hilbert space 

of square integrable holomorphic n-forms in M. If K is the kernel 2n-form on M × M, 

= K* - then the K~ihler metric used by Kobayashi is ds 2 y~(O 2 log /OZiOZj) dzi  d z j ,  where 

K(z ,  7) = K*(z, 7) dzl A . . .  A dzn A d~l A . .-  A d~ n. 
The condition (A1) ((A2), respectively, (A3)) in Kobayashi corresponds to the condition 

of the set of divisors without base points (the differential of t does not have degenerate 
points, respectively, the condition (A1) plus the injectivity condition in [29]). We recall 
that (A1) implies that COl~ = t*oJFs, while (A2) and (A3) imply that the application t is a 
Kahlerian embedding. 

We now discuss other cases in which the representation sr can be constructed. The con- 
dition to have holomorphic discrete series on homogeneous bounded symmetric domains 
(noncompact Hermitian symmetric spaces) results from the quoted theorem of Harish- 
Chandra and, more generally, the condition to have discrete series for connected semisimple 
Lie groups is that rank G = rank K [26]. The problem of structure of homogeneous K~ihler 
manifolds in the context of fundamental conjecture has begun to be handled in connection 
with the coherent states, especially for the unimodular groups [32]. 
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2.2 

In this section we restrict ourselves to coherent state manifolds of flag type, i.e. 214 

G / K  ~, G C / p ,  where G is a compact connected simply connected semisimple Lie group, 

G c is the complexification of  G and P is a parabolic subgroup of  G c [10]. 

The noncompact case is handled similarly, whenever the conditions of the existence of  

the representation zrj are fulflled. 

Let W ( G )  = N ( T ) / C ( T )  denote the Weyl group associated with G, where N ( T )  (C(T) )  

is the normalizer (the centralizer) of  the Cartan group T. Let Z" C N ( T )  be a set of elements 

such that quotient space W ( G ) / W ( K )  is made of  the coset classes {sC(T)}  W ( K ) ,  s ~ Z .  

Then there is an open covering of M by (Vs)scZ, where V~. = 7I'j(S)])O, S C ,.~ [30]. The 

coherent state vectors corresponding to the points of  the neighbourhood V0 C M around 
Z = 0are  

rZ, j )  = exp E (Z~°F+)IJ)' IZ) = (ZlZ)-1/21z} c M, 
~pcA + 

where Z 6 C n are local coordinates and n is the dimension of the manifold M. Here 

Ff *'  + + 
----7r ( f ~ ) ,  (p E An,  

(2.3) 

(2.4) 

rr' = drr, n '  is the isomorphism of the Lie algebra g of G onto the Lie algebra of  operators 

on K, 7r* is the group isomorphism G c ~ 7r*(GC), 

rr*(e z)  = exp(zr*'(Z)), Z c .at, (2.5) 

rr*'(t,~ c)  is the complexification of  the Lie algebra zr' (t.~), the subindex n (resp. c) abbreviates 

the noncompact (resp. compact), A are the roots and A + the positive roots. 

We also use the notation 

+ = i e + ~  forXn,  f ~ =  k~: (2.6) 
e~ = e±~0 for Xc, 

where % + = e+~0 are the part of  the Cartan-Weyl base corresponding to m. Here t~, = f ® ui 

is the Cartan decomposition of the Lie algebra .q of G and ~ is the Lie algebra of K. 

The homogeneous symmetric spaces are obtained as 

Xn.c = e x p  E ( B e f +  - B ¢ f ; )  . o, (2.7) 
~0~A + 

where o = X(e), e is the unit element in G and i is the canonical projection A : G ~ G / K .  

Let also the notation 

IB, j )  = exp Z (BcF+ - / ~ o F ~ - ) l j ) ,  (2.8) 
~ocA + 

IB, j )  ~- IZ, j ) .  (2.9) 
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Note that 

F+lj) :~0, F~l j )  : 0 ,  Hilj) = ji[j), (2.10) 

where ~o ~ A +, Hi = Jr* (hi), {hi} is a base of  the Cartan subalgebra and i = 1 . . . . .  rank G. 

2.3 

We now state more precisely the definition of  the coherent vector manifold M corre- 

sponding to flag manifolds M. Let M t be the holomorphic line bundle M r = ~o I (M) --+ 

Gc/P associated by the holomorphic character X = gj of P to the principal bundle P --+ 

G c ~ GO~P, i.e. the line bundle obtained identifying (g, X(p)w) with (gp, w), where 

p E P ,  w E C .  
In fact, if (M ~, o9, J )  is the compact Kahler manifold (J  is the complex structure, J = 

ad(Z)[,l and Z is the central element of  the Lie algebra f), then (M ~, V, t*(h)) is a quan- 

tization bundle ove r /~  [5], where h is the Hermitian form on the hyperplane line bundle 

[1[ over PL. Then, on the tautological line bundle [ - 1 ] ,  h is given by h : z ---> Izl 2. Also 

curv(V) = -2:riog, so o9 ~ cl (M t) = [o9] de Rham" 
If q9 i : V/ × C - - +  ~O1(]~i) is the local trivialization of  the holomorphic line bundle 

M '  --~ ,~, then a global section is given by 

Isi(m)) ---- (gi(Zi), fsi(Zi)) = (gi(Zi), (silZi)), (2.11) 

where m = gi (Zi)  ~- Vi are matrix elements determined by the local coordinates Zi. Then 

the scalar product on the line bundle M ~ - -+ /~  is given by [9,30] 

(SiIS~) ---- f hx(si(X),  sf(X))o9n(x) 
~ n! 
M 

f du(X) : ( f s i ,  f ~ ; )  : hx(fs~ (X), fs;(Xl) (XIX) ' 

M 

(2.12) 

where d# (X)  is the Haar measure on .~  ~ GC/p. 
The scalar product in (2.12) is also a Hermitian scalar product of  sections with base 

in the D ~ -  module of differentiable operators on M [ 10]. 

When both the dequantization and the requantization can be done, the Hilbert space Kj 
attached to the representation ~rj and the initial K are isomorphic [9,27]. 

3. The cut locus and coherent states 

In this section we shall be concerned with various aspects of  the relationship between 
geodesics and coherent states. We briefly review some definitions used in Section 1. 
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3.1 

Let V be compact Riemannian manifold of  dimension n, p 6 V and let Expp be the 

(geodesic) exponential map at the point p. Let C r denote the set of  vectors X ~ Vp (the 

tangent space at p 6 V) for which ExppX is singular. A point q in V (Vp) is conjugate to 
p if it is in Cp = Exp Cp (Cp) [12] and Cp (resp. Cp) is called the conjugate locus (resp. 

tangent conjugate locus) of the point p. 

Let q 6 V. The point q is in the cut locus CLp of p 6 V if it is the nearest point to 

p c V on the geodesic joining p with q, beyond which the geodesic ceases to minimize 

its arc length [11]. More precisely, let yx( t )  = E x p t X  be a geodesic emanating from 

Yx (0) = p c V, where X is a unit vector from the unit sphere Sp in Vp. toX (resp. Exp toX) 
is called a tangential cut point (resp. cut point) of p along t --~ Exp tX  (0 < t < s) if the 

geodesic segment joining Yx (0) and Yx (t) is a minimal geodesic for any s < to but not for 

any s > to. 
Let us define the function/z : Sp ~ I~ + U cx~, /z(X) = r, i fq  = E x p r X  c CLp, and 

/I(X) = cx~ if there is no cut point of  p along yx(t).  Setting I t, = {tX. 0 < t < #(X)}, 

then lp = Exp Ip is called the interior set atp. Then: 

(1) Ip f )CLp  = 0 ,  V = l p U C L p ,  theclosureIp = V, a n d d i m C L p  < n - 1: 
(2) Ip is a maximal domain containing 0 = Op ~ Vp in which Expp is a diffeomorphism 

and Ip is the largest open subset of V in which a normal coordinate system around p 

can be defined. 

The relative position of  CLo and Co given in [ 11, Theorem 7.1, p.97] is reproduced below. 

Let the notation Yt = yx(t).  Let Yr be the cut point of  Y0 along a geodesic y = Vr, 0 <_ 
t < ec. Then, at least one (possibly both) of  the following statements holds: 

(1) V~ is the first conjugate point of Y0 along y;  

(2) there exists, at least, two minimizing geodesics from Y0 to Yr. 

Crittenden [33] has shown that for the case of  simply connected symmetric spaces, the cut 

locus is identified to the first conjugate point. Generally, the situation is more complicated 

[34,351. 
Here are simple examples of  cut loci. For the sphere S n, the cut locus of  a point reduces 

to the antipodal point, while the tangent cut locus CL is the sphere of radius Jr with centre at 

the origin of  the tangent space. For CP  n, CL is also the sphere of  radius rr with centre at the 

origin of the tangent space to CP  n at the given point, while CL is the hyperplane at infinity 

C p , -  I. Except few situations, e.g. the ellipsoid, even for low-dimensional manifolds as the 

(asymmetric Berger's spheres) S 3, CL is not known explicitly. Helgason [ 12] has shown that 

the cut locus of  a compact connected Lie group endowed with a bi-invariant Riemannian 

metric is stratified, i.e. it is the disjoint union of  smooth submanifolds of  V. This situation will 
be illustrated in the case of complex Grassmannian manifold. Using a geometrical method, 

Wong [13,14,36] has studied conjugate loci and cut loci of the Grassmannian manifolds 

emphasizing also their stratification. Sakai [37] has found out the cut locus of  the connected 

compact symmetric manifold V = U(n)/O(n),  which has tel (V) ~ Z. By refining the 
results of  Ch. VII, Section 5 "control over singular set" from [ 12], Sakai [ 15,38] studied the 
cut locus of a point in a compact symmetric space which is not necessarily simply connected 
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and showed that it is determined by the cut locus of a maximal totally geodesic flat torus of 
V. Takeuchi [39] has also proved the stratified structure of CL and C for compact symmetric 
manifolds. For other references see [16]. However, the expression of the conjugate locus 
as subset of the Grassmannian manifold is not known explicitly. This problem is largely 
discussed elsewhere [17]. In Section 4 of this paper we shall only collect the main results 
of this problem. 

Most considerations in this section concern only manifolds with the property 

(A) Expl0 = ~. o exph,~. 
Here .q = f @ nt is theorthogonal decomposition with respect to the B-form as explained 

in (B) below, Expp : Mp --~ M is the geodesic exponential map (cf. [12, p.33]) and 

exp : ~q --~ G. 
In fact, (A) expresses that the geodesics in ~/I are images of  one-parameter subgroups of  

~/1 ~ G / K .  The symmetric spaces have property (A) (cf.[12, Theorem 3.3, p.208]). 
We shall also be concerned with manifolds ,~ satisfying the following condition: 

(B) On the Lie algebra .q of G there exists an Ad(G)-invariant, symmetric, nondegenerate 
bilinear form B such that the restriction of B to the Lie algebra f of K is likewise 
nondegenerate. 

We point out that i f  the homogeneous space ~l  ~ G / K satisfies (B), then it also satisfies 
(A) (cf. [11, Ch. X, Corollaries 2.5 and 3.6, Theorem 3.5]). Indeed, if .q = f ~ m is the 
orthogonal decomposition relative to the B-form on .q, then m is canonically identified with 
the tangent space at o, Mo. (B) implies a (possibly indefinite) G-invariant metric on .~. 
It follows that G / K  is reductive, i.e. [f, f] C f and [L m] C m. If (B) is true, then M is 
naturally reductive (see [ 11, p.202]) and (A) is also satisfied. The symmetric spaces satisfy 
besides the conditions of reductive spaces, the condition Ira, m] C ~ and, of course, (A) is 
satisfied too (see [ 11, Ch. XI, Theorem 3.2]). 

Thimm [40] furnishes as another examples of homogeneous spaces satisfying (B), besides 
the symmetric spaces, the Lie groups with bi-invariant metric and the normal homogeneous 
spaces (i.e. B is positive definite). Kowalski [41 ] studied generalized symmetric spaces still 
satisfying condition (A). See also [42]. 

3.2 

We now recall that in Ref. [10] we did the following remark, which is in fact Cartan's 
theorem (see e.g. [ 12, Theorem 3.3, p.208]) on geodesics on symmetric spaces expressed 
in the coherent state setting. 

Remark 1. The vector rtB, j )  = exprry( tB) l j )  E M,  B ~ m, describes trajectories in 

M corresponding to the image in the manifold of  coherent states ~1 ~ PL of  geodesics 
through the identity coset element on the symmetric space X ~ G /K .  The dependence 
Z(t) = Z( tB)  appearing when one passes from Eqs. (2.8) to (2.3) describes in ~o a 
geodesic. 
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We shall reformulate Remark 1 in a way very useful even for practical calculations. The 

proof presented below, true in the particular case of Hermitian symmetric spaces, implies 

also Theorem 1. 

R e m a r k  2. For an n-dimensional manifold X ,~ G / K which has Hermitian symmetric 

,space structure, the parameters B~o in formula (2.8) of  normalized coherent states are 

normal coordinates in the normal neighbourhood Vo ~ C '~ around the point Z~ -- 0 on 

the manifold X. 

Proof. The Harish-Chandra embedding theorem can be used (cf. e.g. [26]; see also [101 

for the present context). This theorem asserts that the map M + x K c x M -  --+ G ~ given 

by (m +, k, m - )  --+ m+km - is a complex analytic diffeomorphism onto an open dense 

subset of  G c that contains Gn. Let m ± be the =ki eigenspaces of  J and M ± the (unipotent, 

Abelian) subgroups of G c corresponding to m ±. Then, in particular, b : m + --* Xc = 

GO~P, b(X) = exp(X)P,  is a complex analytic diffeomorphism of m + onto a dense 

subset of Xc (that contains Xn) and the remark follows because the requirement (A) is 

fulfilled for the symmetric spaces. [] 

Another way to reformulate Remark 1 is the following. 

Theorem 1. Let ~I be a coherent state manifold with Hermitian symmetric space structure, 

parametrized in Vo around Z = 0 as in Eqs. (2.3), (2.8). Then the conjugate locus of the 

point o is obtained vanishing the Jacobian of the exponential map Z = Z(B)  and the 

corresponding transformations of  the chart from Vo. 

Proofi The proof is contained in Remark 2. The dependence Z = Z(B) ,  with B 6 m +, 

and Z parametrizing ,~, obtained passing from Eqs. (2.8) to (2.3) using the relations (2.10) 

(the Baker-Campbell-Hausdorff  formulas) [ ! 0], expresses in fact the geodesic exponential 

Exp0 " Mo -+ ,~- [] 

The situation is very transparent in the case of  the complex Grassmannian manifold 

Xc = G,,(C n+')  = SU(n + m) /S(U(n)  × U(m)) and his noncompact dual X, = 

SU(n, m) /S (U(n)  × U(m)). There [10] 

(o 
X n . c = e x p  ±B*  0 o =  

co B si B,/g  

J o ± si B~/-B;-B B,  co Bv/-ff;~ 
B,/g  

(1 z~z Z ' Z )  1/2 q-Z* 

1 ZZ*) I/2 0 

( 0  0 
0 Z ) p ,  

= exp 0 0 (3.1) 
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where B* denotes the Hermitian conjugate of  the matrix B. co is an abbreviation for the 
circular cosine cos (re sp. the hyperbolic cosine coh) for Xc (resp. Xn) and similarly for si. The 

- (resp. + )  sign in the above equation corresponds to the compact (resp. noncompact) X. 

Here Z and B are the n x m matrices related by the relation 

ta B4'~-B 
Z = B - -  (3.2) 

and ta is an abbreviation for the hyperbolic tangent tgh (resp. the circular tangent tg) for Xn 
(resp. Xc). The dependence Z = Z(B)  describes in fact Exp : Gn(Cn+m)e ~ Gn(C n+m) 

in V0. Indeed, the equation of geodesics for Xc,n is [ 17]: 

d2Z 
_ 2E d Z z + ( 1  + e Z Z + ) _  j dZ = 0 (3.3) 

dt 2 dt dt ' 

where E = 1 (resp. - 1) for Xc (resp. Xn). It is easy to see that (3.2) satisfies (3.3) with the 

initial condition 2(0)  = B. 
Z and B in Eq. (3.2) of  geodesics are in the same time the parameters describing the 

coherent states in the parametrization given by Eq. (2.3) and (2.8), respectively. 

3.3 

Firstly, let us introduce a notation for the polar divisor of 10) 6 M : 

Z0 = {1~)117~) ~ M,  (0I~P) = 0}. (3.4) 

This denomination is inspired from that one used by Wu [43] in the case of  the Grass- 

mannian manifold. 
We shall prove the following theorem. 

T h e o r e m  2. Let ~1 be a homogeneous manifold ~1 ~ G/K.  Suppose that there exists a 

unitary irreducible representation zrj of  G such that in a neighbourhood Vo around Z = 0 

the coherent states are parametrized as in Eq. (2.3). Then the manifold ~l  can be represented 

as the disjoint union 

= Vo U 27o. (3.5) 

Moreover, if condition (B) is true, then 

Zo = CLo (3.6) 

and 

Vo = Io. (3.7) 

Proof We can take I~P) --- I~P(Z)) ~ M such that the parameters Z are in C n as in formula 
(2.3). Now, the second relation (2.10) implies that (0[~) = 1 for r~p) 6 seol(V0). It follows 
that the equation 

cos 0 = 0, (3.8) 
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where 

cos0 -- I (01~P)[  --117~11 - I /2  (3.9) 
II011 ~/2 II ¢z II 1/2 

does not have solutions for I~) ~ ~o 1 (V0), and the representation (3.5) follows. 

To prove relation (3.6) if (B) is true, use is made of Theorem 7.4 and the subsequent 
remark at p. 100 from Ref. [ 11 ] reproduced in the beginning of this section in an enriched 

version. The theorem essentially says that any Riemannian manifold h~ is the disjoint union 

of the cut locus (closed cell) and the largest open cell ofh~ in which normal coordinates can 
be defined. But Z c C n for points of  V0 corresponding to the largest normal coordinates 
B c m, because (B) implies (A). [] 

Further we shall prove a corollary of  Theorem 2. This is related to the angle 0 appearing 
in Eq. (3.9). 

Firstly, let us introduce the (Hermitian elliptic) Cayley distance [44] in the projective 
space. Let (., .) be the scalar product in K. If ~ : K \  {0} --~ PK is the natural projection 

: w ~ [o)], then the Cayley distance is 

I(~o', co)l 
dc(lMl, [o)1) = arccos - -  (3.10) 

lloJlllloJll 

The infinite-dimensional case is argued in Ref. [31 ]. Before proving the corollary, we shall 
present the following remark. 

R e m a r k  3 (Geometrical significance of transition amplitudes for coherent states). 

Let IZ) E M, Z E Vo as in (2.3) and t • ~'! ~ PL the embedding o f  the homogeneous 

coherent state manifold into the projective space. Then the angle 0 = O( Z, Z')  defined by 

0 ~ arccos t (Z ' lZ) l  (3.11) 

is equal to geodesic distance joining t ( Z)  and t(Z') .  

0 = dc(t(Z') ,  t (Z)) .  (3.12) 

More generally, the (Cauchy) formula is true: 

(t(z'), t(z)) 
( z ' I Z )  = (3. i3)  

IIt(Z')ll IIt(Z)l l  

Proof Relation (3.13) is an immediate consequence of the fact that the homogeneous 
complex analytic line bundle M over M is projectively induced (see [8, p.139]), i.e. the 
coherent state manifold M is the pull-back of the hyperplane bundle H = [ 1 ] on PL, i.e. 

M = t ' I l l  [27]. [] 

The denomination of Eq. (3.13) as the Cauchy formula is due to the fact that for the 
PliJcker embedding of the Grassmannian manifold this formula is nothing else than the 
(Binet-) Cauchy formula [45]. 
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Corollary 1. Suppose that ~1 is a homogeneous manifold satisfying (B) and admitting the 

embedding t : ~ l  ~ PL. Let 0, Z E ~'1. Then Z ~ CLo iff the Cayley distance between the 
images t(0), t (Z)  ~ PL  is lzr, 

dc(t(0), t (Z))  = ½zr. (3.14) 

Proof  The corollary follows combining Remark 3 and Theorem 2. [] 

4. An example of the complex Grassmannian manifold 

The results of Section 3 will be illustrated in the example of the complex Grassmannian 
manifold. The calculation of the cut locus o n  Gn(C n+m) was announced by Wong [13] 

and now more proofs (see e.g. [15,31]) are available. Also Wong [14] has announced the 

conjugate locus on the Grassmannian manifold, but, as far as I know, the proof has not been 
published. Even more, the results of Wong on conjugate locus on Grassmannian manifold 

were contested by Sakai [ 15], who showed that the result of Wong is incomplete. 
The explicit calculation of the conjugate locus in the manifold using Theorem 1 is pre- 

sented elsewhere [ 17]. Another proof of the results of Sakai referring to the tangent conjugate 
locus is also presented there. Here we just indicate the parameters appearing in the calcu- 

lation in order to illustrate how the assertions of Section 3 referring to the cut locus and 
conjugate locus work in a concrete example. However, we do not have an explicit expression 

for the part of the conjugate locus lost by Wong and only a geometrical characterization in 
terms of the stationary angles. 

4.1 

Firstly we fix the notation concerning the geometric construction of coherent state man- 

ifold when ~1~ is the complex Grassmannian manifold (the manifold of Slater determinants 
[46]). 

Let O be the n-plane passing through the origin of CN(N = n + m) corresponding to 
Z = 0 in V0 C Gn(C N) in the representation (2.3). Then Z ~ V0 ~ C "×m iff there are n 
vectors Zl . . . . .  zn E C N such that 

Z -:- z l  /x . . . / x  zn # O. (4.1) 

We use the Pontrjagin coordinates. Fixing the canonical basis el . . . . .  e s  for C N, then 

N 

Zi = e i  + Z Ziote°t '  i = 1 . . . . .  n.  (4.2) 
~ = n + l  

If the weight j is taken as [10] 

j --- (1 . . . . .  1,0 . . . . .  0), (4.3) 

n m 
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then we have the equality [17] of  the scalar product ('1') of  coherent vectors,from M and 

of  the Hermitian scalar product ((., .)) in the holomorphic line bundle det* [6]: 

(Z ' IZ)  = ( (Z ' ,  Z)) = det( (z ' i ,  Z j ) ) i , j =  I . . . . . .  = det(ln + Z Z ' * ) .  (4.4) 

We have used the notation 

Z, = (1,,, Z ) ,  (4.5) 

where  Z is an n x m ma t r i x  and In is the un i ty  n x n mat r i x .  

So, the parameters Z in formula (2.3)for the Grassmannian manifold of  coherent states" 

are the Pontrjagin [47] coordinates Z in formula (4.2). 
Let us also introduce the Pl{icker coordinates Z i ' i ' : ,  i.e. 

= ~ Z i l ' " i n e i l  A . . .  A ein. (4.6) Z 

1 < i  I <...<in<N 

Let  l " G n ( K )  ~-> P L  be the PliJcker embedd ing ,  where  K - -  C N, L --- C *N(m), N ( m )  = 

(U) _ 1. Using the notation of Section 2 for X = Xc = Gn(CN),  then M'  = M, that is 
m0 = l in M 'm° = M (i.e. the line bundle det* is not only ample, but very ample [28]) and 

M = t*[1], where [1] is the hyperplane section H in L. 
The (Binet-) Cauchy formula [45] invoked in Eq. (3.13) reads explicitly 

det ( (z ' i ,  Z j ) ) i , j =  1 ..... n = Z Zi l " ' i " z  dl'''i'' . (4.7) 
1 <_il < " "  <in < N  

4.2 

We now fix the notation referring to the Schubert varieties. 

Let the sequences of  integers 

o9 = {0 < o9(1) < - . .  < co(n) < m}, (4.8) 

or(i) = co(i) + i ,  i = 1 . . . . .  n. (4.9) 

The Schubert varieties are defined as [4711 

Z(og) = {X  E Gn(Cn+m) l dim(X n C °'(i)) >_ i } .  (4.10) 

Z(og) are closed cells in the Grassmannian manifold. The "jumps" sequence [481 is 
introduced as 

Ico= {i0 < il < --- < i l - i  < il = n } ,  (4.11t 

where 

w( ih )<og( ih+l ) ,  og ( i )=og( ih - l ) ,  i h _ l < i < i h ,  h = l  . . . . .  1. (4.12) 

Let us consider the subset of  generic elements of  Z(og) [47]: 

= I X  C G n ( C n + m ) [ d i m ( X N C  cr(i')) = ih, ih E loj].  Z'  (og) (4.13) 
/ I 
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The condition to get generic elements Z of Z(w), Z 6 V0 n Z(w) c Z'(w), is [47,49]: 

Zi j  = O, j > o)(i), i = 1 . . . . .  n. (4.14) 

Let also the notation 

VI p = {Z C Gn(Cn+m)l dim(Z n C p) > l} ,  (4.15) 

W f  = vIP - VlPl = {Z  C Gn(Cn+m) l dim(Z N C  p) = l},  (4.16) 

(of = (p - 1 . . . . .  p - l, m . . . . .  m). (4.17) 

i .2t 

4.3 

Then [14,36,17] 

Vt p = Z(wf ) ;  Wt p = Z'(o) f ) .  (4.18) 

We now briefly recall some notions referring to the stationary angles. 
Let Z ' ,  Z be two n-planes of  Gn(C n+m) given as in Eq. (4.1). Then the (n) stationary 

angles (see [18] for the real case), of which most r = min(m, n) are nonzero, are defined 
as the stationary angles 0 E [0, ½Jr] between the vectors 

n n 

a = Z a i g  ;, b = Z b i z i ,  
i=1 i=1 

where 

(4.19) 

I(a, b)l 
cos 0 -- (4.20) 

lallbl 

We recollect the following two lemmas [ 17,18,50,51 ]. 

Lemma 1. The squares COS 20i of the stationary angles between the n-planes Z, Z' with 
((Z, Z')) 7~ 0 are given as the eigenvalues of a matrix W which, for Z, Z' E Vo, is 

(4.21) W = (1 + Z Z + ) - I  (1 + ZZ '+ ) (1  + Z ' Z ' + ) - 1 ( 1  + Z ' Z  +) . 

Let 0 be the angle defined by the Hermitian scalar product in the following 

(4.22) 

Lemma 2. 
equation: 

I((Z' ,  Z))I I det(1 + ZZ '+ ) I  
c o s 0 ( Z ' ,  Z) = 

IIZ'tlllZll I det(1 + ZZ+)lJ/21 det(1 + Z'Z'+)II/2 ' 

dc the Cayley distance and O1 . . . . .  On the stationary angles. Then 

cos 0 (Z, Z ' )  = cos dc (t (Z ' ) ,  t (Z)) = cos 01 " -  cos On • (4.23) 
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It can be proved [17] that the eigenvalues of W appear also in the expression of the 
distance on the complex Grassmannian manifold (see also [52]). 

Note also that if expression (3.2) of the dependence Z = Z(B)  is introduced in the 
formula of the distance between the points Z = 0 and Z 6 V0 on the Grassmannian 
manifold, then 

d 2 = ~ IBijl 2. (4.24) 

The last equation expresses the fact that the parameters B in Eq. (2.8) of coherent states 
are indeed the normal coordinates as it is asserted in Remark 2. 

4.4 

We present below the cut locus and the conjugate locus for Gn (cm+n). 0 ± denotes the 
orthogonal complement of the n-plane O in C N. 

Remark 4 (Wong [13]). The cut locus of  the point 0 is given by 

CLo = 2So = V~ n = Z(o)r~) = Z(m - 1, m . . . . .  m) 

= {X C G,,(Cn+'n)ldim(X NO -L) > l / .  (4.25) 

The cut locus in Gn(C m+n) is given by those n-planes which have at least one of the 

stationa~, angles ire with the n-plane O. 

Proof An immediate proof can be obtained using the results of Wu referring to the polar 
divisor 270 on the Grassmannian manifold (see [43, Ch. 1]) and the theorems characterizing 
the canonical (universal, det) bundle on Gn (C N) (see especially [7, Ch. 7, Proposition 3.3]), 
which are particularizations of the representation in Theorem 2. [] 

The following theorem summarizes the known facts about the tangent conjugate locus 
and conjugate locus in Gn (C rn+n) [ 13,15,17]. The relevant fact for the present paper is that 
the conjugate locus can be calculated using Theorem 1. 

Theorem 3. The tangent conjugate locus Co of  the point 0 E Gn (C m+n) is given by 

U adk( t iH) ,  i = 1 , 2 , 3 ;  l < p < q < r ,  k E K ,  (4.26) C o =  
k,p,q,i 

where the vector H E a is normalized, 

t" 

n = y ~ h i O i n + i ,  hi E ~,  y ~ h 2  = 1 • 
i=l  

The parameters ti, i = 1, 2, 3, in Eq. (4.26) are: 

)~rr 
t! -- - - ,  multiplicity 2; 

Ihp =t= hql 

(4.27) 
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~.7g 
t 2 -  2lhpl '  multiplicity 1; 

Mr 
t3 - multiplicity 21m - nl; ~. ~ 77*. 

Ihpl ' 

The conjugate locus of O in Gn (C re+n) is given by the union 

(4.28) 

Co = u (4.29) 

The following relations are true: 

C~ = exp U Ad k(tl H ) ,  
k,p,q 

(4.30) 

C w = exp U A d k ( t 2 H ) ,  (4.31) 
k,p 

i.e. exponentiating the vectors of the type t! H we get the points of C g for which at least two 
of the stationary angles with 0 are equal, while the vectors of the type t2 H are sent to the 
points of C w for which at least one of the stationary angles with 0 is 0 or l zr. 

The C w part of the conjugate locus is given by the disjoint union 

C ~ =  { V~nuV~'  n < m ,  
v~nu n > m, Vnn_m+l, (4.32) 

where 

c p m - I  

v;"= W .UWTU...uw;mlUWr 
f o r n  ~ l ,  

(4.33) 
1 < n ,  

I Gr(Cmax(m'n))'  n ¢ m, (4.34) 
Wr m 

0 3-, n = m, [ 

{W~U . . . U W r n l U O ,  1 < n < m ,  
'vln = O, n = 1, (4.35) 

. . . .  W[,_l UO, > Vnn_m + l n n Wn_m+ 2 U U n rn - -  W n _ m +  1 U n . (4.36) 

Proof(sketch). The tangent conjugate locus Co for Gn(C  m+n) in the case n < m was 
obtained by Sakai [15]. Sakai has observed that Wong's result on the conjugate locus 

in the manifold is incomplete, i.e. C~ v C Co but C w ~ Co = exp Co. The proof of  Sakai 
consists in solving the eigenvalue equation R(X, y i  ) X  = ei y i  which appears when solving 

the Jacobi equation, where the curvature for the symmetric space Xc = Gc/K at o is 

simply R(X, Y )Z  = [[X, Y], Z], X, Y, Z E inc. Then q = Exp0 tX  is conjugate to o if 

t = 7r~./V'b~i, L E Z* = 7/\10 }. 
Above a is the Cartan subalgebra of  the symmetric pair (SU(n + m), S(U(n) x U(m))) 

[12,15,17] consisting of  vectors of  the form (4.27) where r is the symmetric rank of Xc 
(and Xn) and we use the notation Oij = Ei j  -- E j i ,  i, j = 1 . . . . .  N. Eij  is the matrix with 
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entry 1 on line i and column j and 0 otherwise. The results in the complex Grassmannian 

manifold are obtained further using the exponential map given by Eq. (3.2). 

The same result on the calculation of the tangent conjugate locus can be obtained [17] 
using [12, Proposition 3.1, p.294]. This proposition asserts that H E ¢~ is conjugate with o 

iff a ( H )  E izr7/* for some root a which do not vanish identically on a. The eigenvalues of 
the equation [H, X] ---- ZX, 'v'H E a, X c ~C, lead [17] to the values given in Eq. (4.26) 
for the parameters t~ - t3. 

The direct proof [17] in the Grassmannian manifold uses in Theorem 1 the dependence 
Z = Z ( B )  furnished by Eq. (3.2) which gives the geodesics on Gn(C '~+'~) and Jordan's 

stationary angles between two n-planes. The stationary angles between two n-planes are 

given by Lemma l and appear in the relation given by Lemma 2. 
The proof [17] is done in four steps. (a) First, a diagonalization of the n × m matrix Z 

is performed. (b) Second, the Jacobian of a transformation of complex dimension one is 

computed. (c) The cut locus is reobtained and his contribution to the conjugate locus is 

taken into account. (d) The nonzero angles are counted using the following property of the 

stationary angles: if the n' (n)-plane (resp. Zn) are such that Z',~, N Zn = Z,~,,," then n' - n" 
angles of Z~,, and Z,, are different from 0 and n" are 0. [] 

5. Conclusion and discussion 

In this paper it was shown that for a certain class of homogeneous manifolds which 

include the symmetric ones there is a relationship between geodesics and coherent states. 
The starting point [ 10] of the present investigation, contained in Remark 1, is the observation 

that for symmetric spaces, if one expresses the parameters Z in Eq. (2.3) as a function of the 

parameters B in Eq. (2.8), both characterizing the coherent states, explicit local formulas for 
the geodesic exponential map are obtained. For Hermitian symmetric spaces the dependence 

Z = Z ( B )  can be found using the Harish-Chandra decomposition or the so-called Baker- 
Campbell-Hausdorff formulas [ 10]. Thus Theorem 1 permits a calculation of the conjugate 
locus in Gn(cm+n). However, the explicit form of the conjugate locus in Gn(C m+n) is 

not completely known [17]. The part of the conjugate locus C~ v determined by Wong is 

expressible as Schubert varieties [ 14], while the rest [ 15] C / can be characterized [ 17] as the 
subset of points of Gn (C m +n) which have at least two of the stationary angles with the fixed 

n-plane O equal. C / contains as subset the maximal set of mutually isoclinic [53] subspaces 
of the Grassmannian manifold, which are isoclinic spheres [53,54], with dimension given 
by the solution of the Hurwitz [55] problem. This part referring to the explicit calculation 
of the conjugate locus on G~ (C m+~) was only briefly included in Section 4, the full details 
being presented elsewhere [ 17]. 

The main remark of this paper contained in Theorem 2, equality (1.1), is a simple conse- 
quence of the fact that any manifold is the disjoint union of a maximal normal neighbourhood 
V0 of a point 0 and the cut locus CLo. It would be interesting to find a geometrical descrip- 
tion of the polar divisor for manifolds which are not characterized by condition (B). On 
the other side, the problem to find explicitly the cut locus on nonsymmetric spaces is a 
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difficult one [ 16]. Also it was proved that for homogeneous manifolds satisfying condition 

(B) and admitting an embedding in an adequate projective Hilbert space a necessary and 

sufficient condition that a point to belong to the cut locus of another point is that the Cayley 

distance between the images of the points through the embedding to be ½rr. This category 

of manifolds includes all the coherent states manifolds which admit prequantization [ 19]. 
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